
RIPE Atlas probes and
the User-Defined
Measurements

Stéphane Bortzmeyer
AFNIC

bortzmeyer@nic.fr

1 / 36

RIPE Atlas probes and
the User-Defined
Measurements

Stéphane Bortzmeyer
AFNIC

bortzmeyer@nic.fr

2 / 36

RIPE 67
Athens
october 2013

3 / 36

What is RIPE Atlas?
1 A set of small probes installed in many

houses, LAN and data centers in the world.
More volunteers welcome (specially outside
of Europe).

2 Reporting to the RIPE-NCC, which can
instructs them to run active measurements.

3 Today, around 3 900 probes.
4 A friendly botnet :-)

4 / 36

What is RIPE Atlas?
1 A set of small probes installed in many

houses, LAN and data centers in the world.
More volunteers welcome (specially outside
of Europe).

2 Reporting to the RIPE-NCC, which can
instructs them to run active measurements.

3 Today, around 3 900 probes.
4 A friendly botnet :-)

4 / 36

What is RIPE Atlas?
1 A set of small probes installed in many

houses, LAN and data centers in the world.
More volunteers welcome (specially outside
of Europe).

2 Reporting to the RIPE-NCC, which can
instructs them to run active measurements.

3 Today, around 3 900 probes.

4 A friendly botnet :-)

4 / 36

What is RIPE Atlas?
1 A set of small probes installed in many

houses, LAN and data centers in the world.
More volunteers welcome (specially outside
of Europe).

2 Reporting to the RIPE-NCC, which can
instructs them to run active measurements.

3 Today, around 3 900 probes.
4 A friendly botnet :-)

4 / 36

What is RIPE Atlas?
1 A set of small probes installed in many

houses, LAN and data centers in the world.
More volunteers welcome (specially outside
of Europe).

2 Reporting to the RIPE-NCC, which can
instructs them to run active measurements.

3 Today, around 3 900 probes.
4 A friendly botnet :-)

https://atlas.ripe.net/

4 / 36

https://atlas.ripe.net/

What is its use?
Measurements by the RIPE-NCC for its
services (K-root name server. . .),

Scientific papers on the working of the
Internet,
Funny operations problems (like the Juniper
bug of network 128)
But also personal practical measurements
such as “Can everybody talk to
2001:db8:1:42::bad:dcaf?”

5 / 36

What is its use?
Measurements by the RIPE-NCC for its
services (K-root name server. . .),
Scientific papers on the working of the
Internet,

Funny operations problems (like the Juniper
bug of network 128)
But also personal practical measurements
such as “Can everybody talk to
2001:db8:1:42::bad:dcaf?”

5 / 36

What is its use?
Measurements by the RIPE-NCC for its
services (K-root name server. . .),
Scientific papers on the working of the
Internet,
Funny operations problems (like the Juniper
bug of network 128)

But also personal practical measurements
such as “Can everybody talk to
2001:db8:1:42::bad:dcaf?”

5 / 36

What is its use?
Measurements by the RIPE-NCC for its
services (K-root name server. . .),
Scientific papers on the working of the
Internet,
Funny operations problems (like the Juniper
bug of network 128)
But also personal practical measurements
such as “Can everybody talk to
2001:db8:1:42::bad:dcaf?”

The Internet is critical for everything but yet not
well known.

5 / 36

Real examples of practical use
Strange connectivity problem at AFNIC
because of a autistic router at AMS-IX (lots
of ping, some traceroutes, to identify where
the problem was)

Which ones of your anycast servers are
used? (DNS) https://labs.ripe.net/
Members/stephane_bortzmeyer/
using-atlas-udm-to-find-the-popular-instances-of-a-dns-anycast-name-server
Censorship when going through China
(DNS) https:
//labs.ripe.net/Members/pk/
denic-case-study-using-ripe-atlas

6 / 36

https://labs.ripe.net/Members/stephane_bortzmeyer/using-atlas-udm-to-find-the-popular-instances-of-a-dns-anycast-name-server
https://labs.ripe.net/Members/stephane_bortzmeyer/using-atlas-udm-to-find-the-popular-instances-of-a-dns-anycast-name-server
https://labs.ripe.net/Members/stephane_bortzmeyer/using-atlas-udm-to-find-the-popular-instances-of-a-dns-anycast-name-server
https://labs.ripe.net/Members/pk/denic-case-study-using-ripe-atlas
https://labs.ripe.net/Members/pk/denic-case-study-using-ripe-atlas
https://labs.ripe.net/Members/pk/denic-case-study-using-ripe-atlas

Real examples of practical use
Strange connectivity problem at AFNIC
because of a autistic router at AMS-IX (lots
of ping, some traceroutes, to identify where
the problem was)
Which ones of your anycast servers are
used? (DNS) https://labs.ripe.net/
Members/stephane_bortzmeyer/
using-atlas-udm-to-find-the-popular-instances-of-a-dns-anycast-name-server

Censorship when going through China
(DNS) https:
//labs.ripe.net/Members/pk/
denic-case-study-using-ripe-atlas

6 / 36

https://labs.ripe.net/Members/stephane_bortzmeyer/using-atlas-udm-to-find-the-popular-instances-of-a-dns-anycast-name-server
https://labs.ripe.net/Members/stephane_bortzmeyer/using-atlas-udm-to-find-the-popular-instances-of-a-dns-anycast-name-server
https://labs.ripe.net/Members/stephane_bortzmeyer/using-atlas-udm-to-find-the-popular-instances-of-a-dns-anycast-name-server
https://labs.ripe.net/Members/pk/denic-case-study-using-ripe-atlas
https://labs.ripe.net/Members/pk/denic-case-study-using-ripe-atlas
https://labs.ripe.net/Members/pk/denic-case-study-using-ripe-atlas

Real examples of practical use
Strange connectivity problem at AFNIC
because of a autistic router at AMS-IX (lots
of ping, some traceroutes, to identify where
the problem was)
Which ones of your anycast servers are
used? (DNS) https://labs.ripe.net/
Members/stephane_bortzmeyer/
using-atlas-udm-to-find-the-popular-instances-of-a-dns-anycast-name-server
Censorship when going through China
(DNS) https:
//labs.ripe.net/Members/pk/
denic-case-study-using-ripe-atlas

6 / 36

https://labs.ripe.net/Members/stephane_bortzmeyer/using-atlas-udm-to-find-the-popular-instances-of-a-dns-anycast-name-server
https://labs.ripe.net/Members/stephane_bortzmeyer/using-atlas-udm-to-find-the-popular-instances-of-a-dns-anycast-name-server
https://labs.ripe.net/Members/stephane_bortzmeyer/using-atlas-udm-to-find-the-popular-instances-of-a-dns-anycast-name-server
https://labs.ripe.net/Members/pk/denic-case-study-using-ripe-atlas
https://labs.ripe.net/Members/pk/denic-case-study-using-ripe-atlas
https://labs.ripe.net/Members/pk/denic-case-study-using-ripe-atlas

Similar projects
The company SamKnows
http://www.samknows.eu/ distributes
probes in thousands of households inside
the EU. Their active measurements are the
basis of the “Broadband in Europe:
Consumers are not getting the internet
speeds they are paying for”
http://europa.eu/rapid/
press-release_IP-13-609_en.htm.

The european Leone research project
http://www.leone-project.eu/ also
uses the SamKnows.
In the USA, there is the Bismark projet
http://projectbismark.net/.

7 / 36

http://www.samknows.eu/
http://europa.eu/rapid/press-release_IP-13-609_en.htm
http://europa.eu/rapid/press-release_IP-13-609_en.htm
http://www.leone-project.eu/
http://projectbismark.net/

Similar projects
The company SamKnows
http://www.samknows.eu/ distributes
probes in thousands of households inside
the EU.
The european Leone research project
http://www.leone-project.eu/ also
uses the SamKnows. (There was a talk at
RIPE 66.)

In the USA, there is the Bismark projet
http://projectbismark.net/.

7 / 36

http://www.samknows.eu/
http://www.leone-project.eu/
http://projectbismark.net/

Similar projects
The company SamKnows
http://www.samknows.eu/ distributes
probes in thousands of households inside
the EU.
The european Leone research project
http://www.leone-project.eu/ also
uses the SamKnows.
In the USA, there is the Bismark projet
http://projectbismark.net/.
Currently ˜ 150 active probes.

7 / 36

http://www.samknows.eu/
http://www.leone-project.eu/
http://projectbismark.net/

Less similar projects

Many projects based on software “probes”:
Netalyzr http:
//netalyzr.icsi.berkeley.edu/,
Java code to debug the network, used a lot
among gamers, P2Pers. . .

Grenouille http://grenouille.com/,
ISP performance measurements in France
since 2000.

8 / 36

http://netalyzr.icsi.berkeley.edu/
http://netalyzr.icsi.berkeley.edu/
http://grenouille.com/

Less similar projects

Many projects based on software “probes”:
Netalyzr http:
//netalyzr.icsi.berkeley.edu/,
Java code to debug the network, used a lot
among gamers, P2Pers. . .
Grenouille http://grenouille.com/,
ISP performance measurements in France
since 2000.

8 / 36

http://netalyzr.icsi.berkeley.edu/
http://netalyzr.icsi.berkeley.edu/
http://grenouille.com/

Less similar projects
Many projects based on software “probes”:

Netalyzr http:
//netalyzr.icsi.berkeley.edu/,
Java code to debug the network, used a lot
among gamers, P2Pers. . .
Grenouille http://grenouille.com/,
ISP performance measurements in France
since 2000.

Easier and cheaper to deploy, but dependency
on the host software, less reliable for
quantitative measures. . .

8 / 36

http://netalyzr.icsi.berkeley.edu/
http://netalyzr.icsi.berkeley.edu/
http://grenouille.com/

User-Defined Measurements
You can run your own measurements (UDM) on
the RIPE Atlas probes.

1 But not your own programs: you can use
only pre-defined protocols (ping, traceroute,
DNS and TLS). HTTP is under study (it
raises many issues).

2 You can choose among a wide range of
options (for DNS, you can ask TCP, NSID,
DNSSEC DO, etc).

3 You are limited in quantity: no way to run a
dDoS.

9 / 36

User-Defined Measurements
You can run your own measurements (UDM) on
the RIPE Atlas probes.

1 But not your own programs: you can use
only pre-defined protocols (ping, traceroute,
DNS and TLS). HTTP is under study (it
raises many issues).

2 You can choose among a wide range of
options (for DNS, you can ask TCP, NSID,
DNSSEC DO, etc).

3 You are limited in quantity: no way to run a
dDoS.

9 / 36

User-Defined Measurements
You can run your own measurements (UDM) on
the RIPE Atlas probes.

1 But not your own programs: you can use
only pre-defined protocols (ping, traceroute,
DNS and TLS). HTTP is under study (it
raises many issues).

2 You can choose among a wide range of
options (for DNS, you can ask TCP, NSID,
DNSSEC DO, etc).

3 You are limited in quantity: no way to run a
dDoS.

9 / 36

The target

This is the machine you query during a
measurement
If you want to compare N targets, you need to
run N measurements

10 / 36

The credit system
1 You gain credits by hosting probes or

buying credits through sponsorship or
getting credits from other persons.

2 You spend credits by running UDM.
Everything has a price. For instance, for
DNS, TCP requests are twice as expensive
as UDP ones.

3 Credit consumption rate-limits the use of
Atlas probes.

11 / 36

The credit system
1 You gain credits by hosting probes or

buying credits through sponsorship or
getting credits from other persons.

2 You spend credits by running UDM.
Everything has a price. For instance, for
DNS, TCP requests are twice as expensive
as UDP ones.

3 Credit consumption rate-limits the use of
Atlas probes.

11 / 36

The credit system
1 You gain credits by hosting probes or

buying credits through sponsorship or
getting credits from other persons.

2 You spend credits by running UDM.
Everything has a price. For instance, for
DNS, TCP requests are twice as expensive
as UDP ones.

3 Credit consumption rate-limits the use of
Atlas probes.

11 / 36

Start the workshop

Please check:
Connectivity to
https://atlas.ripe.net

Log in, and check the amount of credits
Create an API key and store it for future
measurements
Your favorite programming language.

12 / 36

https://atlas.ripe.net

Start the workshop

Please check:
Connectivity to
https://atlas.ripe.net

Log in, and check the amount of credits

Create an API key and store it for future
measurements
Your favorite programming language.

12 / 36

https://atlas.ripe.net

Start the workshop

Please check:
Connectivity to
https://atlas.ripe.net

Log in, and check the amount of credits
Create an API key and store it for future
measurements

Your favorite programming language.

12 / 36

https://atlas.ripe.net

Start the workshop

Please check:
Connectivity to
https://atlas.ripe.net

Log in, and check the amount of credits
Create an API key and store it for future
measurements
Your favorite programming language.

12 / 36

https://atlas.ripe.net

Analyzing an UDM
Let’s start with a public measurement,
#1009150 (an IPv4 ping reachability
measurement). Each measurement has an ID
like #1009150

1 We can retrieve it from
https://atlas.ripe.net/api/v1/
measurement/1009150/result/. wget,
curl, whatever. Download it.

2 The format is JSON and is documented in
https://atlas.ripe.net/doc/data_
struct. Let’s examine the content.

13 / 36

https://atlas.ripe.net/api/v1/measurement/1009150/result/
https://atlas.ripe.net/api/v1/measurement/1009150/result/
https://atlas.ripe.net/doc/data_struct
https://atlas.ripe.net/doc/data_struct

Analyzing an UDM
Let’s start with a public measurement,
#1009150 (an IPv4 ping reachability
measurement). Each measurement has an ID
like #1009150

1 We can retrieve it from
https://atlas.ripe.net/api/v1/
measurement/1009150/result/. wget,
curl, whatever. Download it.

2 The format is JSON and is documented in
https://atlas.ripe.net/doc/data_
struct. Let’s examine the content.

13 / 36

https://atlas.ripe.net/api/v1/measurement/1009150/result/
https://atlas.ripe.net/api/v1/measurement/1009150/result/
https://atlas.ripe.net/doc/data_struct
https://atlas.ripe.net/doc/data_struct

Content of the JSON results

1 A big JSON array, one item per probe,

2 Each item is a JSON object, one member is
the array “result”, with one result per test (3
tests per probe, by default).

14 / 36

Content of the JSON results

1 A big JSON array, one item per probe,
2 Each item is a JSON object, one member is

the array “result”, with one result per test (3
tests per probe, by default).

14 / 36

Important rules of Atlas
analysis

1 Program cautiously: JSON members may
be missing, for instance (yes, there is the
documentation but not everything is in it)

2 Use the actual data in the results, not the
requested data. For instance, the number of
probes reporting a result may be lower than
the number you asked for. Don’t assume

3 Be prepared for things that are not yet
ready when you ask for them. Response
times may vary!

15 / 36

Important rules of Atlas
analysis

1 Program cautiously: JSON members may
be missing, for instance (yes, there is the
documentation but not everything is in it)

2 Use the actual data in the results, not the
requested data. For instance, the number of
probes reporting a result may be lower than
the number you asked for. Don’t assume

3 Be prepared for things that are not yet
ready when you ask for them. Response
times may vary!

15 / 36

Important rules of Atlas
analysis

1 Program cautiously: JSON members may
be missing, for instance (yes, there is the
documentation but not everything is in it)

2 Use the actual data in the results, not the
requested data. For instance, the number of
probes reporting a result may be lower than
the number you asked for. Don’t assume

3 Be prepared for things that are not yet
ready when you ask for them. Response
times may vary!

15 / 36

First analysis program
Load the data in a JSON obect
results = json.loads(file.read())

Main loop over the results
for probe in results:

Per-test loop
for test in probe[’result’]:

if test.has_key(’x’):
timeouts += 1

elif test.has_key(’error’):
errors += 1

elif test.has_key(’rtt’):
num_rtt += 1
total_rtt += test[’rtt’]

16 / 36

Your turn: analyze #1009150

1 How many probes did not reach the target,
even once?

2 Which are they? (field prb_id)

17 / 36

Periodic measurements

You can also create periodic (automatically
repeated) measurements

They have a start time and a end time
They are of course much more costly
(watch your credits!)

18 / 36

Periodic measurements

You can also create periodic (automatically
repeated) measurements
They have a start time and a end time

They are of course much more costly
(watch your credits!)

18 / 36

Periodic measurements

You can also create periodic (automatically
repeated) measurements
They have a start time and a end time
They are of course much more costly
(watch your credits!)

18 / 36

Analyze a periodic
measurement

1 Download the results of #1025096 (DNS
requests to d.nic.fr)

2 Plot the RTT per hour to see daily cycles

starttime = time.gmtime(result[’timestamp’])
starttimes[starttime.tm_hour] += 1
rtpertime[starttime.tm_hour] += float(result[’result’][’rt’])

19 / 36

Analyze a periodic
measurement

1 Download the results of #1025096 (DNS
requests to d.nic.fr)

2 Plot the RTT per hour to see daily cycles

starttime = time.gmtime(result[’timestamp’])
starttimes[starttime.tm_hour] += 1
rtpertime[starttime.tm_hour] += float(result[’result’][’rt’])

19 / 36

Analysis of a traceroute
The result of traceroute measurements is not
very readable in JSON.
Use community-contributed
json2traceroute.py:
% python json2traceroute.py 1013442.json
From: 130.79.86.251 2259 FR-U-STRASBOURG OSIRIS - UNIVERSITE DE STRASBOURG
Source address: 130.79.86.251
Probe ID: 2279
1 130.79.86.253 2259 FR-U-STRASBOURG OSIRIS - UNIVERSITE DE STRASBOURG [2.922, 2.542, 2.686]
2 193.51.183.130 2200 FR-RENATER Reseau National de telecommunications pour la Technologie [2.666, 2.572, 3.016]
...
7 217.70.176.214 29169 GANDI-AS Gandi SAS [11.094, 10.871, 10.186]
8 217.70.176.250 29169 GANDI-AS Gandi SAS [32.749, 9.386, 10.046]
9 217.70.190.232 29169 GANDI-AS Gandi SAS [11.058, 10.215, 9.371]

20 / 36

Creating an UDM through the
Web

1 Click “One-off measurement” and choose
“ping”, one probe, and one of the Anchors
as a target https:
//atlas.ripe.net/anchors/list
(add .anchors.atlas.ripe.net)

2 “One-off measurement” and choose “DNS
IN AAAA”, one probe, an ODVR resolver
https://www.dns-oarc.net/oarc/
services/odvr as the target and
www.afnic.fr as the query.

21 / 36

https://atlas.ripe.net/anchors/list
https://atlas.ripe.net/anchors/list
https://www.dns-oarc.net/oarc/services/odvr
https://www.dns-oarc.net/oarc/services/odvr

Creating an UDM through the
Web

1 Click “One-off measurement” and choose
“ping”, one probe, and one of the Anchors
as a target https:
//atlas.ripe.net/anchors/list
(add .anchors.atlas.ripe.net)

2 “One-off measurement” and choose “DNS
IN AAAA”, one probe, an ODVR resolver
https://www.dns-oarc.net/oarc/
services/odvr as the target and
www.afnic.fr as the query.

21 / 36

https://atlas.ripe.net/anchors/list
https://atlas.ripe.net/anchors/list
https://www.dns-oarc.net/oarc/services/odvr
https://www.dns-oarc.net/oarc/services/odvr

Also, a command-line tool,
using the API

https://github.com/astrikos/
ripe-atlas-cmdline
% python atlas_manage.py oneoff -f ~/.atlas/auth
Specify Target:ns1.bortzmeyer.org
Specify Type:ping
Specify Start Time [Unix Timestamp\Leave blank for now]:
Specify Number of Probes (Integer):5
Specify Probes Source Type [area/country/prefix/asn/probes/msm]:area
Specify Probes Source [WW/West/North-Central/South-Central/North-East/South-East]:WW
You are about to create a new oneoff RIPE Atlas UDM with the following details:
{’definitions’: [{’description’: ’Ping ns1.bortzmeyer.org’, ’type’:

’ping’, ’target’: ’ns1.bortzmeyer.org’, ’is_oneoff’: ’true’,
’af’: 4}], ’probes’: [{’requested’: 5, ’type’: ’area’, ’value’: ’WW’}]}

[y/n]:y
A new oneoff UDM just created with id: 1026479
Seems we got more than 90% (5) of requested probes, sleeping for
5 more secs to be sure we get the maximum probes Atlas can give us.

22 / 36

https://github.com/astrikos/ripe-atlas-cmdline
https://github.com/astrikos/ripe-atlas-cmdline

Creating an UDM through the
API

Basic rules:
1 Create a JSON object with the parameters

2 Do a REST request to https://atlas.
ripe.net/api/v1/measurement/

3 Parse the JSON result (you’ll get the
measurement ID)

23 / 36

https://atlas.ripe.net/api/v1/measurement/
https://atlas.ripe.net/api/v1/measurement/

Creating an UDM through the
API

Basic rules:
1 Create a JSON object with the parameters
2 Do a REST request to https://atlas.
ripe.net/api/v1/measurement/

3 Parse the JSON result (you’ll get the
measurement ID)

23 / 36

https://atlas.ripe.net/api/v1/measurement/
https://atlas.ripe.net/api/v1/measurement/

Creating an UDM through the
API

Basic rules:
1 Create a JSON object with the parameters
2 Do a REST request to https://atlas.
ripe.net/api/v1/measurement/

3 Parse the JSON result (you’ll get the
measurement ID)

23 / 36

https://atlas.ripe.net/api/v1/measurement/
https://atlas.ripe.net/api/v1/measurement/

Create the JSON parameters

Documentation in https://atlas.ripe.
net/doc/measurement-creation-api/

{’definitions’: [
{’target’: ’192.0.2.1’, ’af’: 4, ’packets’: 3,
’type’: ’ping’, ’is_oneoff’: True,
’description’: ’Ping 192.0.2.1 from GR’}],

’probes’: [
{’requested’: 5, ’type’: ’country’,
’value’: ’GR’}]}

24 / 36

https://atlas.ripe.net/doc/measurement-creation-api/
https://atlas.ripe.net/doc/measurement-creation-api/

Selection of probes
You have a wide choice of probe selection
criteria:

1 By country,
2 By AS,
3 By prefix,
4 By measurement (“Use the same probes as

in measurement #123456”)
5 By probe ID if you know the probes you’re

interested in.

25 / 36

Do a REST request

Do not forget the media type
application/json

‘‘data’’ is a Python object with the parameters
request = urllib2.Request(url)
request.add_header("Content-Type", "application/json")
request.add_header("Accept", "application/json")
json_data = json.dumps(data)
conn = urllib2.urlopen(request, json_data)

26 / 36

Parse the result

results = json.load(conn)
print("Measurement #%s started" % (results["measurements"]))

except urllib2.HTTPError as e:
print >>sys.stderr, ("Fatal error %s: %s" % (e.code, e.read()))
sys.exit(1)

27 / 36

Parse the result
results = json.load(conn)
print("Measurement #%s started" % (results["measurements"]))

Pay attention to the return code and the reason.
400 = wrong parameters, check the doc, 401 =
wrong API key, . . .

except urllib2.HTTPError as e:
print >>sys.stderr, ("Fatal error %s: %s" % (e.code, e.read()))
sys.exit(1)

27 / 36

Start a periodic measurement
Start and end times have to be in number of
seconds since the Unix Epoch. To measure
during one week:

start_time_obj = datetime.datetime.utcnow()
end_time_obj = datetime.datetime.utcnow() + datetime.timedelta(days=7)
The next two integers will be send in the JSON data
start_time_unix = int((start_time_obj - \

datetime.datetime(1970,1,1)).total_seconds())
end_time_unix = int((end_time_obj - \

datetime.datetime(1970,1,1)).total_seconds())

28 / 36

Your turn: reachability test

1 Ping your employer’s Web server with a
one-off measurement

2 5 probes are more than enough

29 / 36

Your turn: reachability test

1 Ping your employer’s Web server with a
one-off measurement

2 5 probes are more than enough

29 / 36

Retrieving the results

When the REST request returns, the
measurement is not over. The probes did
not even receive the order.

You need to wait and to poll. Unfortunately,
there is no easy way to know when it’s over.
(It will be improved soon.) For Python
programmers, the package RIPEAtlas
does it for you.

30 / 36

Retrieving the results

When the REST request returns, the
measurement is not over. The probes did
not even receive the order.
You need to wait and to poll. Unfortunately,
there is no easy way to know when it’s over.
(It will be improved soon.) For Python
programmers, the package RIPEAtlas
does it for you.

30 / 36

The algorithm
Remember the network of probes is a
distributed one. Things are not synchronous.

1 Ask how many probes were allocated
https://atlas.ripe.net/api/v1/
measurement/1009150/?fields=
probes,status

2 Query https://atlas.ripe.net/api/
v1/measurement/1009150/result and
check that enough probes reported (wait
otherwise).

31 / 36

https://atlas.ripe.net/api/v1/measurement/1009150/?fields=probes,status
https://atlas.ripe.net/api/v1/measurement/1009150/?fields=probes,status
https://atlas.ripe.net/api/v1/measurement/1009150/?fields=probes,status
https://atlas.ripe.net/api/v1/measurement/1009150/result
https://atlas.ripe.net/api/v1/measurement/1009150/result

The algorithm
1 Ask how many probes were allocated
https://atlas.ripe.net/api/v1/
measurement/1009150/?fields=
probes,status It requires testing
data["status"]["name"] to check that
the measurement actually started (wait
otherwise).

2 Query https://atlas.ripe.net/api/
v1/measurement/1009150/result and
check that enough probes reported (wait
otherwise).

31 / 36

https://atlas.ripe.net/api/v1/measurement/1009150/?fields=probes,status
https://atlas.ripe.net/api/v1/measurement/1009150/?fields=probes,status
https://atlas.ripe.net/api/v1/measurement/1009150/?fields=probes,status
https://atlas.ripe.net/api/v1/measurement/1009150/result
https://atlas.ripe.net/api/v1/measurement/1009150/result

The algorithm
1 Ask how many probes were allocated
https://atlas.ripe.net/api/v1/
measurement/1009150/?fields=
probes,status

2 Query https://atlas.ripe.net/api/
v1/measurement/1009150/result and
check that enough probes reported (wait
otherwise). You may not get 100 % of
probes reporting so you also need to
request https://atlas.ripe.net/
api/v1/measurement/1009150/
?fields=status and test
data["status"]["name"].

31 / 36

https://atlas.ripe.net/api/v1/measurement/1009150/?fields=probes,status
https://atlas.ripe.net/api/v1/measurement/1009150/?fields=probes,status
https://atlas.ripe.net/api/v1/measurement/1009150/?fields=probes,status
https://atlas.ripe.net/api/v1/measurement/1009150/result
https://atlas.ripe.net/api/v1/measurement/1009150/result
https://atlas.ripe.net/api/v1/measurement/1009150/?fields=status
https://atlas.ripe.net/api/v1/measurement/1009150/?fields=status
https://atlas.ripe.net/api/v1/measurement/1009150/?fields=status

Use of the RIPEAtlas module
Code at https:
//github.com/RIPE-Atlas-Community/
ripe-atlas-community-contrib/blob/
master/RIPEAtlas.py

import RIPEAtlas
data = { "definitions": [

{ "target": "2001:db8::f00:ba4",
"description": "Ping my Web server" ...

measurement = RIPEAtlas.Measurement(data)
rdata = measurement.results(wait=True, percentage_required=0.99)

For periodic measurements, use wait=True
for the constructor, too.

32 / 36

https://github.com/RIPE-Atlas-Community/ripe-atlas-community-contrib/blob/master/RIPEAtlas.py
https://github.com/RIPE-Atlas-Community/ripe-atlas-community-contrib/blob/master/RIPEAtlas.py
https://github.com/RIPE-Atlas-Community/ripe-atlas-community-contrib/blob/master/RIPEAtlas.py
https://github.com/RIPE-Atlas-Community/ripe-atlas-community-contrib/blob/master/RIPEAtlas.py

DNS analysis

1 DNS results are sent as a blob (the wire
format of the response)

2 You need some DNS library to analyze it
3 We use dnspython
http://www.dnspython.org/

33 / 36

http://www.dnspython.org/

DNS analysis

1 DNS results are sent as a blob (the wire
format of the response)

2 You need some DNS library to analyze it

3 We use dnspython
http://www.dnspython.org/

33 / 36

http://www.dnspython.org/

DNS analysis

1 DNS results are sent as a blob (the wire
format of the response)

2 You need some DNS library to analyze it
3 We use dnspython
http://www.dnspython.org/

33 / 36

http://www.dnspython.org/

DNS
Example: analyze the result of AAAA requests

results = json.loads(open(filename).read())
for result in results:

answer = result[’result’][’abuf’] + "=="
content = base64.b64decode(answer)
msg = dns.message.from_wire(content)
for rrset in msg.answer:

for rdata in rrset:
if rdata.rdtype == dns.rdatatype.AAAA:

Do something with rdata.address

34 / 36

Limits and problems of Internet
measurements

Ground truth: a problem that you detect can
be in fact the normal state. Example: ping
failure, because ICMP is filtered. Or IPv6
connectivity. Always compare with the
ground truth.

Rate-limiting
Network glitches

35 / 36

Limits and problems of Internet
measurements

Ground truth
Rate-limiting: many targets have
rate-limiters, specially for ICMP echo
requests. Many Atlas probes can have less
success than a few.

Network glitches

35 / 36

Limits and problems of Internet
measurements

Ground truth
Rate-limiting
Network glitches: networks come and go. If
you do three one-off tests at different
moments, one may fall in a big network
problem.

35 / 36

Conclusion

Expecting interesting papers from you at
https://labs.ripe.net/ or at RIPE
meetings :-)

36 / 36

https://labs.ripe.net/

www.afnic.fr
contact@afnic.fr

Merci !

